*The term***damping factor**can also refer to the ratio between a source and load impedance.

**Damping** is any effect, either deliberately engendered or inherent to a system, that tends to reduce the amplitude of oscillations.

In applied mathematics, damping is mathematically modelled as a force with magnitude proportional to that of the velocity of the object but opposite in direction to it. Thus, for a simple mechanical damper, the force **F** is related to the velocity **v** by

- where
*R*is the*damper constant*.

This relationship is perfectly analogous to electrical resistance. See Ohm's law.

In playing stringed instruments such as guitar or violin, **damping** is the quieting or abrupt silencing of the strings after they have been sounded, by pressing with the edge of the palm, or other parts of the hand such as the fingers on one or more strings near the bridge of the instrument. The strings themselves can be modelled as a continuum of infinitesimally small mass-spring-damper systems where the damping constant is much smaller than the resonant frequency, creating damped oscillations (see below). See also Vibrating string.

## Example: mass-spring-damper[]

An ideal mass-spring-damper system with mass *m* (in kilograms), spring constant *k* (in newtons per meter) and damper constant *R* (in newton-seconds per meter) can be described with the following formulae:

Treating the mass as a free body and applying Newton's second law, we have:

where *a* is the acceleration (in meters per second^{2}) of the mass and

```
is the displacement (in meters) of the mass relative to a fixed point of reference.
```

### Differential equation[]

The equations of motion combine to form a second-order differential equation for displacement *x* as a function of time *t* (in seconds):

Rearranging, we have

Next, to simplify the equation, we define the following parameters:

and

The first parameter,
, is called the (undamped) natural frequency of the system.
The second,
, is called the *damping factor*. Both parameters represent angular frequencies and have for units of measure radians per second.

The differential equation now becomes:

Continuing, we can solve the equation by assuming

- where

```
is, in general, a complex number.
```

Substituting this assumed solution back into the differential equation, we obtain:

Solving for , we find:

### System behavior[]

The behavior of the system depends on the relative values of the two fundamental parameters, the natural frequency ω_{0} and the damping factor α.

#### Critical damping[]

When ,

is real and the system iscritically damped. An example of critical damping is the door-closer seen on many hinged doors in public buildings.

#### Over-damping[]

When ,

is still real, but now the system is said to beover-damped. An overdamped door-closer will take longer to close the door than a critically damped door closer.

#### Under-damping[]

Finally, when ,

is complex, and the system isunder-damped. In this situation, the system will oscillate at the damped frequency, which is a function of the natural frequency and the damping factor.

The solution can be generally written as:

where

represents the *damped frequency* of the system, and *A* and

are determined by the initial conditions of the system (usually the initial position and velocity of the mass).

## See also[]

- RLC circuit
- Oscillator
- Harmonic oscillator
- Simple harmonic motion
- Resonance

This page uses Creative Commons Licensed content from Wikipedia (view authors). |