Engineering
Advertisement

Nanoelectronics refers to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Some of these candidates include: hybrid molecular/semiconductor electronics, one-dimensional nanotubes/nanowires (e.g. silicon nanowires or carbon nanotubes) or advanced molecular electronics.

Nanoelectronics has origins in the scaling and miniaturization of metal-oxide-semiconductor field-effect transistor (MOSFET) devices, also known as MOS transistors.[1] Nanoelectronic devices have critical dimensions with a size range between 1 nm and 100 nm.[2] Recent silicon MOS transistor technology generations are already within this regime, including 22 nanometer CMOS (complementary MOS) nodes and succeeding 14 nm, 10 nm and 7 nm FinFET (fin field-effect transistor) generations. Nanoelectronics are sometimes considered as disruptive technology because present candidates are significantly different from traditional transistors.

History[]

See also: History of nanotechnology, Multi-gate MOSFET, Semiconductor device fabrication, and Transistor count
Atalla1963
Dawon Kahng
Mohamed Atalla (above) and Dawon Kahng (below) demonstrated MOS transistors with 100 nm gate oxide thickness in 1960, and then a nanolayer-base M–S junction transistor using thin films with 10 nm thickness in 1962.

In 1959, Egyptian engineer Mohamed Atalla and Korean engineer Dawon Kahng at Bell Labs invented the first metal-oxide-semiconductor field-effect transistor (MOSFET), also known as MOS transistor.[1] In 1960, they fabricated and demonstrated PMOS and NMOS transistors with a gate length of 10 µm and gate oxide thickness of 100 nm.[3][4] In 1962, Atalla and Kahng fabricated a nanolayer-base metal–semiconductor junction transistor that used gold (Au) thin films with a thickness of 10 nm.[5] This allowed it to operate at a much higher frequency than bipolar transistors of that era.[6]

In 1984, Nippon Telegraph and Telephone (NTT) researchers Toshio Kobayashi, Seiji Horiguchi and K. Kiuchi demonstrated a silicon-gate NMOS transistor with 100 nm channel length and 5 nm oxide thickness.[7] In 1985, NTT researchers Toshio Kobayashi, Seiji Horiguchi, M. Miyake and M. Oda demonstrated NMOS with 150 nm channel length and 2.5 nm oxide thickness.[8] The same year, a Stephen Y. Chou demonstrated NMOS with 75 nm channel length.[9]

In 1985, Egyptian engineer Hisham Z. Massoud introduced the Massoud model.[10] It is the most suitable thermal oxidation model for ultra-thin oxide films,[11] and has since become the most widely used thermal oxidation model in nanoelectronics and nanotechnology.[12]

In 1986, Iranian engineer Ghavam G. Shahidi at MIT fabricated a silicon NMOS transistor with 60 nanometer channel length and 7.5 nm oxide thickness.[13][14] The device was fabricated using X-ray lithography.[15] In 1987, Iranian engineer Bijan Davari led an IBM research team that demonstrated a MOSFET with 10 nm gate oxide thickness using tungsten-gate technology.[16]

In 1995, an IBN research team consisting of Hussein I. Hanafi, Farhan Rana, Sandip Tiwari, Wei Chen and Kevin Chan demonstrated nanocrystal memory using MOS transistors with 5 nm to 10 nm nanocrystals.[17][18][19] In 1996, they demonstrated nanocrystal memory using MOS transistors with 2 nm to 5 nm nanocrystals.[20] Nanocrystals, also known as quantum dots, are now commonly used in flash memory.[21]

Multi-gate MOSFETs enabled scaling below 20 nm gate length, starting with the FinFET (fin field-effect transistor), a three-dimensional, non-planar, double-gate MOSFET.[22] The FinFET originates from the DELTA transistor developed by Hitachi Central Research Laboratory's Digh Hisamoto, Toru Kaga, Yoshifumi Kawamoto and Eiji Takeda in 1989.[23][24][25] Using silicon on insulator (SOI) technology, the DELTA transistor had 200 nm gate length.[26] In 1990, a 100 nm CMOS process was demonstrated by Iranian engineers Ghavam G. Shahidi and Bijan Davari.[27]

In 1995, an IBM team led by Hussein I. Hanafi demonstrated nanocrystal memory using MOS transistors with 5 nm to 10 nm nanocrystals.[28][29][30] They then demonstrated nanocrystal memory using MOS transistors with 2 nm to 5 nm nanocrystals.[31] Nanocrystals, also known as quantum dots, are now commonly used in flash memory.[32]

Indonesian engineer Effendi Leobandung, while working at the University of Minnesota, published a paper with Stephen Y. Chou at the 54th Device Research Conference in 1996 outlining the benefit of cutting a wide CMOS transistor into many channels with narrow width to improve device scaling and increase device current by increasing the effective device width.[33] This structure is what a modern FinFET looks like.[34] The device had a 35 nm channel width and 70 nm channel length.[33]

In 1997, DARPA awarded a contract to a research group at UC Berkeley to develop a deep sub-micron DELTA transistor.[25] The group consisted of Hisamoto along with TSMC's Chenming Hu and other international researchers including Tsu-Jae King Liu, Shibly Ahmed, Cyrus Tabery, Jeffrey Bokor, Hideki Takeuchi, K. Asano, Jakub Kedziersk, Xuejue Huang, Leland Chang and Nick Lindert. The team successfully fabricated FinFET devices down to a 17 nm process in 1998, and then 15 nm in 2001. In 2002, a team including Yu, Chang, Ahmed, Tabery, Hu, Liu and Bokor fabricated a 10 nm FinFET device.[22]

In 1999, a CMOS (complementary MOS) transistor developed at the Laboratory for Electronics and Information Technology in Grenoble, France, tested the limits of the principles of the MOSFET transistor with a diameter of 18 nm (approximately 70 atoms placed side by side). It enabled the theoretical integration of seven billion junctions on a €1 coin. However, the CMOS transistor was not a simple research experiment to study how CMOS technology functions, but rather a demonstration of how this technology functions now that we ourselves are getting ever closer to working on a molecular scale. According to Jean-Baptiste Waldner in 2007, it would be impossible to master the coordinated assembly of a large number of these transistors on a circuit and it would also be impossible to create this on an industrial level.[35]

In 2006, a team of Korean researchers from the Korea Advanced Institute of Science and Technology (KAIST) and the National Nano Fab Center developed a 3 nm MOSFET, the world's smallest nanoelectronic device. It was based on gate-all-around (GAA) FinFET technology.[36][37]

Commercial production of nanoelectronic semiconductor devices began in the 2010s. In 2013, SK Hynix began commercial mass-production of a 16 nm process,[38] TSMC began production of a 16 nm FinFET process,[39] and Samsung Electronics began production of a 10 nm class process.[40] TSMC began production of a 7 nm process in 2017,[41] and Samsung began production of a 5 nm process in 2018.[42] In 2017, TSMC announced plans for the commercial production of a 3 nm process by 2022.[43] In 2019, Samsung announced plans for a 3 nm GAAFET (gate-all-around FET) process by 2021.[44]

Timeline[]

See also: List of semiconductor scale examples and Transistor density
Date Channel length Oxide thickness[45] MOSFET Researcher(s) Organization Ref
June 1960 20,000 nm 100 nm PMOS Mohamed M. Atalla, Dawon Kahng Bell Telephone Laboratories [46][47]
NMOS
10,000 nm 100 nm PMOS Mohamed M. Atalla, Dawon Kahng Bell Telephone Laboratories [48]
NMOS
October 1966 100,000 100 TFT T.P. Brody, H.E. Kunig Westinghouse Electric [49][50]
1968 20,000 nm 100 nm CMOS ? RCA Laboratories [51]
1970 10,000 nm 100 nm CMOS ? RCA Laboratories [51]
October 1974 1,000 nm 35 nm NMOS Hwa-Nien Yu, Robert H. Dennard, Fritz H. Gaensslen IBM T.J. Watson Research Center [52]
500 nm
September 1975 1,500 nm 20 nm NMOS Ryoichi Hori, Hiroo Masuda, Osamu Minato Hitachi [53][54]
April 1979 1,000 nm 25 nm NMOS William R. Hunter, L. M. Ephrath, Alice Cramer IBM T.J. Watson Research Center [55]
February 1983 1,200 nm 25 nm CMOS R.J.C. Chwang, M. Choi, D. Creek, S. Stern, P.H. Pelley Intel [56][57]
900 nm 15 nm CMOS Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone (NTT) [56][58]
December 1983 1,000 nm 22.5 nm CMOS G.J. Hu, Yuan Taur, Robert H. Dennard, Chung-Yu Ting IBM T.J. Watson Research Center [59]
December 1984 100 nm 5 nm NMOS Toshio Kobayashi, Seiji Horiguchi, K. Kiuchi Nippon Telegraph and Telephone [60]
December 1985 150 nm 2.5 nm NMOS Toshio Kobayashi, Seiji Horiguchi, M. Miyake, M. Oda Nippon Telegraph and Telephone [61]
75 nm ? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis MIT [62]
January 1986 60 nm ? NMOS Stephen Y. Chou, Henry I. Smith, Dimitri A. Antoniadis MIT [63]
November 1986 90 8.3 ? Han-Sheng Lee, L.C. Puzio General Motors [64]
December 1986 60 ? ? Ghavam G. Shahidi, Dimitri A. Antoniadis, Henry I. Smith MIT [65][66]
February 1987 800 nm 17 nm CMOS T. Sumi, Tsuneo Taniguchi, Mikio Kishimoto, Hiroshige Hirano Matsushita [56][67]
700 nm 12 nm CMOS Tsuneo Mano, J. Yamada, Junichi Inoue, S. Nakajima Nippon Telegraph and Telephone [56][68]
May 1987 ? 10 ? Bijan Davari, Chung-Yu Ting, Kie Y. Ahn, S. Basavaiah IBM T.J. Watson Research Center [69]
June 1987 200 nm 3.5 nm PMOS Toshio Kobayashi, M. Miyake, K. Deguchi Nippon Telegraph and Telephone [70]
September 1987 500 nm 12.5 nm CMOS Hussein I. Hanafi, Robert H. Dennard, Yuan Taur, Nadim F. Haddad IBM T.J. Watson Research Center [71]
February 1988 400 nm 10 nm CMOS M. Inoue, H. Kotani, T. Yamada, Hiroyuki Yamauchi Matsushita [56][72]
December 1990 100 nm ? CMOS Ghavam G. Shahidi, Bijan Davari, Yuan Taur, James D. Warnock IBM T.J. Watson Research Center [73]
December 1993 40 nm ? NMOS Mizuki Ono, Masanobu Saito, Takashi Yoshitomi Toshiba [74]
September 1996 16 nm ? PMOS Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [75]
June 1997 30 ? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [76]
June 1998 50 nm 1.3 nm NMOS Khaled Z. Ahmed, Effiong E. Ibok, Miryeong Song Advanced Micro Devices (AMD) [77][78]
December 1998 17 nm ? FinFET Digh Hisamoto, Chenming Hu, Tsu-Jae King Liu, Jeffrey Bokor University of California (Berkeley) [79][80]
1998 32 ? ? ? NEC [81]
1999 8
April 2000 8 ? EJ-MOSFET Hisao Kawaura, Toshitsugu Sakamoto, Toshio Baba NEC [82]
2001 15 nm ? FinFET Chenming Hu, Yang‐Kyu Choi, Nick Lindert, Tsu-Jae King Liu University of California (Berkeley) [79][83]
December 2002 6 nm ? PMOS Bruce Doris, Omer Dokumaci, Meikei Ieong IBM [84][85][86]
December 2002 10 nm ? FinFET Shibly Ahmed, Scott Bell, Cyrus Tabery, Jeffrey Bokor University of California (Berkeley) [79][87]
December 2003 3 nm ? PMOS Hitoshi Wakabayashi, Shigeharu Yamagami NEC [88][85]
NMOS
December 2003 5 nm ? CMOS Hitoshi Wakabayashi, Shigeharu Yamagami, Nobuyuki Ikezawa NEC [89][90]
June 2006 3 nm ? GAAFET Hyunjin Lee, Yang-kyu Choi, Lee-Eun Yu, Seong-Wan Ryu KAIST [91][92]

Fundamental concepts[]

In 1965, Gordon Moore observed that silicon transistors were undergoing a continual process of scaling downward, an observation which was later codified as Moore's law. Since his observation, transistor minimum feature sizes have decreased from 10 micrometers to the 10 nm range as of 2019. Note that the technology node doesn't directly represent the minimum feature size. The field of nanoelectronics aims to enable the continued realization of this law by using new methods and materials to build electronic devices with feature sizes on the nanoscale.

Mechanical issues[]

The volume of an object decreases as the third power of its linear dimensions, but the surface area only decreases as its second power. This somewhat subtle and unavoidable principle has huge ramifications. For example, the power of a drill (or any other machine) is proportional to the volume, while the friction of the drill's bearings and gears is proportional to their surface area. For a normal-sized drill, the power of the device is enough to handily overcome any friction. However, scaling its length down by a factor of 1000, for example, decreases its power by 10003 (a factor of a billion) while reducing the friction by only 10002 (a factor of only a million). Proportionally it has 1000 times less power per unit friction than the original drill. If the original friction-to-power ratio was, say, 1%, that implies the smaller drill will have 10 times as much friction as power; the drill is useless.

For this reason, while super-miniature electronic integrated circuits are fully functional, the same technology cannot be used to make working mechanical devices beyond the scales where frictional forces start to exceed the available power. So even though you may see microphotographs of delicately etched silicon gears, such devices are currently little more than curiosities with limited real world applications, for example, in moving mirrors and shutters.[93] Surface tension increases in much the same way, thus magnifying the tendency for very small objects to stick together. This could possibly make any kind of "micro factory" impractical: even if robotic arms and hands could be scaled down, anything they pick up will tend to be impossible to put down. The above being said, molecular evolution has resulted in working cilia, flagella, muscle fibers and rotary motors in aqueous environments, all on the nanoscale. These machines exploit the increased frictional forces found at the micro or nanoscale. Unlike a paddle or a propeller which depends on normal frictional forces (the frictional forces perpendicular to the surface) to achieve propulsion, cilia develop motion from the exaggerated drag or laminar forces (frictional forces parallel to the surface) present at micro and nano dimensions. To build meaningful "machines" at the nanoscale, the relevant forces need to be considered. We are faced with the development and design of intrinsically pertinent machines rather than the simple reproductions of macroscopic ones.

All scaling issues therefore need to be assessed thoroughly when evaluating nanotechnology for practical applications.

Approaches[]

Nanofabrication[]

For example, electron transistors, which involve transistor operation based on a single electron. Nanoelectromechanical systems also fall under this category. Nanofabrication can be used to construct ultradense parallel arrays of nanowires, as an alternative to synthesizing nanowires individually.[94][95] Of particular prominence in this field, Silicon nanowires are being increasingly studied towards diverse applications in nanoelectronics, energy conversion and storage. Such SiNWs can be fabricated by thermal oxidation in large quantities to yield nanowires with controllable thickness.

Nanomaterials electronics[]

Besides being small and allowing more transistors to be packed into a single chip, the uniform and symmetrical structure of nanowires and/or nanotubes allows a higher electron mobility (faster electron movement in the material), a higher dielectric constant (faster frequency), and a symmetrical electron/hole characteristic.[96]

Also, nanoparticles can be used as quantum dots.

Molecular electronics[]

Single molecule devices are another possibility. These schemes would make heavy use of molecular self-assembly, designing the device components to construct a larger structure or even a complete system on their own. This can be very useful for reconfigurable computing, and may even completely replace present FPGA technology.

Molecular electronics[97] is a new technology which is still in its infancy, but also brings hope for truly atomic scale electronic systems in the future. One of the more promising applications of molecular electronics was proposed by the IBM researcher Ari Aviram and the theoretical chemist Mark Ratner in their 1974 and 1988 papers Molecules for Memory, Logic and Amplification, (see Unimolecular rectifier).[98][99]

This is one of many possible ways in which a molecular level diode / transistor might be synthesized by organic chemistry. A model system was proposed with a spiro carbon structure giving a molecular diode about half a nanometre across which could be connected by polythiophene molecular wires. Theoretical calculations showed the design to be sound in principle and there is still hope that such a system can be made to work.

Other approaches[]

Nanoionics studies the transport of ions rather than electrons in nanoscale systems.

Nanophotonics studies the behavior of light on the nanoscale, and has the goal of developing devices that take advantage of this behavior.

Nanoelectronic devices[]

Current high-technology production processes are based on traditional top down strategies, where nanotechnology has already been introduced silently. The critical length scale of integrated circuits is already at the nanoscale (50 nm and below) regarding the gate length of transistors in CPUs or DRAM devices.

Computers[]

Threshold formation nowatermark

Simulation result for formation of inversion channel (electron density) and attainment of threshold voltage (IV) in a nanowire MOSFET. Note that the threshold voltage for this device lies around 0.45V.

Nanoelectronics holds the promise of making computer processors more powerful than are possible with conventional semiconductor fabrication techniques. A number of approaches are currently being researched, including new forms of nanolithography, as well as the use of nanomaterials such as nanowires or small molecules in place of traditional CMOS components. Field effect transistors have been made using both semiconducting carbon nanotubes[100] and with heterostructured semiconductor nanowires (SiNWs).[101]

Memory storage[]

Electronic memory designs in the past have largely relied on the formation of transistors. However, research into crossbar switch based electronics have offered an alternative using reconfigurable interconnections between vertical and horizontal wiring arrays to create ultra high density memories. Two leaders in this area are Nantero which has developed a carbon nanotube based crossbar memory called Nano-RAM and Hewlett-Packard which has proposed the use of memristor material as a future replacement of Flash memory.

An example of such novel devices is based on spintronics. The dependence of the resistance of a material (due to the spin of the electrons) on an external field is called magnetoresistance. This effect can be significantly amplified (GMR - Giant Magneto-Resistance) for nanosized objects, for example when two ferromagnetic layers are separated by a nonmagnetic layer, which is several nanometers thick (e.g. Co-Cu-Co). The GMR effect has led to a strong increase in the data storage density of hard disks and made the gigabyte range possible. The so-called tunneling magnetoresistance (TMR) is very similar to GMR and based on the spin dependent tunneling of electrons through adjacent ferromagnetic layers. Both GMR and TMR effects can be used to create a non-volatile main memory for computers, such as the so-called magnetic random access memory or MRAM.

Commercial production of nanoelectronic memory began in the 2010s. In 2013, SK Hynix began mass-production of 16 nm NAND flash memory,[38] and Samsung Electronics began production of 10 nm multi-level cell (MLC) NAND flash memory.[40] In 2017, TSMC began production of SRAM memory using a 7 nm process.[41]

Novel optoelectronic devices[]

In the modern communication technology traditional analog electrical devices are increasingly replaced by optical or optoelectronic devices due to their enormous bandwidth and capacity, respectively. Two promising examples are photonic crystals and quantum dots. Photonic crystals are materials with a periodic variation in the refractive index with a lattice constant that is half the wavelength of the light used. They offer a selectable band gap for the propagation of a certain wavelength, thus they resemble a semiconductor, but for light or photons instead of electrons. Quantum dots are nanoscaled objects, which can be used, among many other things, for the construction of lasers. The advantage of a quantum dot laser over the traditional semiconductor laser is that their emitted wavelength depends on the diameter of the dot. Quantum dot lasers are cheaper and offer a higher beam quality than conventional laser diodes.

Displays[]

The production of displays with low energy consumption might be accomplished using carbon nanotubes (CNT) and/or Silicon nanowires. Such nanostructures are electrically conductive and due to their small diameter of several nanometers, they can be used as field emitters with extremely high efficiency for field emission displays (FED). The principle of operation resembles that of the cathode ray tube, but on a much smaller length scale.

Quantum computers[]

Entirely new approaches for computing exploit the laws of quantum mechanics for novel quantum computers, which enable the use of fast quantum algorithms. The Quantum computer has quantum bit memory space termed "Qubit" for several computations at the same time. This facility may improve the performance of the older systems.

Radios[]

Nanoradios have been developed structured around carbon nanotubes.[102]

Energy production[]

Research is ongoing to use nanowires and other nanostructured materials with the hope to create cheaper and more efficient solar cells than are possible with conventional planar silicon solar cells.[103] It is believed that the invention of more efficient solar energy would have a great effect on satisfying global energy needs.

There is also research into energy production for devices that would operate in vivo, called bio-nano generators. A bio-nano generator is a nanoscale electrochemical device, like a fuel cell or galvanic cell, but drawing power from blood glucose in a living body, much the same as how the body generates energy from food. To achieve the effect, an enzyme is used that is capable of stripping glucose of its electrons, freeing them for use in electrical devices. The average person's body could, theoretically, generate 100 watts of electricity (about 2000 food calories per day) using a bio-nano generator.[104] However, this estimate is only true if all food was converted to electricity, and the human body needs some energy consistently, so possible power generated is likely much lower. The electricity generated by such a device could power devices embedded in the body (such as pacemakers), or sugar-fed nanorobots. Much of the research done on bio-nano generators is still experimental, with Panasonic's Nanotechnology Research Laboratory among those at the forefront.

Medical diagnostics[]

There is great interest in constructing nanoelectronic devices[105][106][107] that could detect the concentrations of biomolecules in real time for use as medical diagnostics,[108] thus falling into the category of nanomedicine.[109] A parallel line of research seeks to create nanoelectronic devices which could interact with single cells for use in basic biological research.[110] These devices are called nanosensors. Such miniaturization on nanoelectronics towards in vivo proteomic sensing should enable new approaches for health monitoring, surveillance, and defense technology.[111][112][113]

References[]

  1. 1.0 1.1 Dhavse, Rasika; Parekh, Rutu (2023-12-12). Nanoelectronics: Physics, Technology and Applications. Institute of Physics Publishing. ISBN 978-0-7503-4809-6.
  2. Beaumont, Steven P. (September 1996). "III–V Nanoelectronics". Microelectronic Engineering. 32 (1): 283–295. doi:10.1016/0167-9317(95)00367-3. ISSN 0167-9317.
  3. Sze, Simon M. (2002). Semiconductor Devices: Physics and Technology (PDF) (2nd ed.). Wiley. p. 4. ISBN 0-471-33372-7.
  4. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. p. 164. ISBN 9780521873024.
  5. Pasa, André Avelino (2010). "Chapter 13: Metal Nanolayer-Base Transistor". Handbook of Nanophysics: Nanoelectronics and Nanophotonics. CRC Press. pp. 13–1, 13–4. ISBN 9781420075519.
  6. "A Brief History of the MOS transistor, Part 1: Early Visionaries". Electronic Engineering Journal. 2023-04-03. Retrieved 2024-09-13.
  7. Kobayashi, Toshio; Horiguchi, Seiji; Kiuchi, K. (December 1984). "Deep-submicron MOSFET characteristics with 5 nm gate oxide". 1984 International Electron Devices Meeting: 414–417. doi:10.1109/IEDM.1984.190738. S2CID 46729489.
  8. Kobayashi, Toshio; Horiguchi, Seiji; Miyake, M.; Oda, M.; Kiuchi, K. (December 1985). "Extremely high transconductance (above 500 mS/mm) MOSFET with 2.5 nm gate oxide". 1985 International Electron Devices Meeting: 761–763. doi:10.1109/IEDM.1985.191088. S2CID 22309664.
  9. Chou, Stephen Y.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1985). "Observation of electron velocity overshoot in sub-100-nm-channel MOSFET's in Silicon". IEEE Electron Device Letters. 6 (12): 665–667. Bibcode:1985IEDL....6..665C. doi:10.1109/EDL.1985.26267. S2CID 28493431.
  10. Massoud, Hisham Z.; J.D. Plummer (1985). "Thermal oxidation of silicon in dry oxygen: Accurate determination of the kinetic rate constants". Journal of the Electrochemical Society. 132 (11): 2693–2700. doi:10.1149/1.2113649.
  11. "2.7 The Massoud Model". www.iue.tuwien.ac.at. Retrieved 2024-08-23.
  12. Sun, Yan; Wu, Yanhua; Liu, Kexue; Zhou, Wenfei (March 2019). "Brief Introduction of Thermal Oxidation Technology". 2019 China Semiconductor Technology International Conference (CSTIC). IEEE: 1–3. doi:10.1109/CSTIC.2019.8755700. ISBN 978-1-5386-7443-7.
  13. Shahidi, Ghavam G.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1986). "Electron velocity overshoot at 300 K and 77 K in silicon MOSFETs with submicron channel lengths". 1986 International Electron Devices Meeting. pp. 824–825. doi:10.1109/IEDM.1986.191325. S2CID 27558025.
  14. Chou, Stephen Y.; Smith, Henry I.; Antoniadis, Dimitri A. (1986). "Sub-100-nm channel-length transistors fabricated using x-ray lithography". Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 4 (1): 253–255. Bibcode:1986JVSTB...4..253C. doi:10.1116/1.583451. ISSN 0734-211X.
  15. Shahidi, Ghavam G.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1988). "Reduction of hot-electron-generated substrate current in sub-100-nm channel length Si MOSFET's". IEEE Transactions on Electron Devices. 35 (12): 2430–. Bibcode:1988ITED...35.2430S. doi:10.1109/16.8835.
  16. Davari, Bijan; Ting, Chung-Yu; Ahn, Kie Y.; Basavaiah, S.; Hu, Chao-Kun; Taur, Yuan; Wordeman, Matthew R.; Aboelfotoh, O.; Krusin-Elbaum, L.; Joshi, Rajiv V.; Polcari, Michael R. (1987). "Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide". 1987 Symposium on VLSI Technology. Digest of Technical Papers: 61–62.
  17. Tiwari, S.; Rana, F.; Wei Chen; Chan, K.; Hanafi, H. (1995). "A low power 77 K nano-memory with single electron nano-crystal storage". 1995 53rd Annual Device Research Conference Digest. IEEE: 50–51. doi:10.1109/DRC.1995.496266. ISBN 978-0-7803-2788-7.
  18. Tiwari, S.; Rana, F.; Chan, K.; Hanafi, H.; Wei Chan; Buchanan, D. (1995). "Volatile and non-volatile memories in silicon with nano-crystal storage". Proceedings of International Electron Devices Meeting. IEEE: 521–524. doi:10.1109/IEDM.1995.499252. ISBN 978-0-7803-2700-9.
  19. Graaff, Henk C. de, ed. (1995). ESSDERC '95: proceedings of the 25th European Solid State Device Research Conference, The Netherlands Congress Centre, The Hague, The Netherlands, 25th - 27th September 1995. Gif sur Yvette: Éd. Frontières. ISBN 978-2-86332-182-9.
  20. Hanafi, H.I.; Tiwari, S.; Khan, I. (September 1996). "Fast and long retention-time nano-crystal memory". IEEE Transactions on Electron Devices. 43 (9): 1553–1558. doi:10.1109/16.535349.
  21. Banerjee, Writam (2018-10-09). Nanocrystals in Nonvolatile Memory. Jenny Stanford Publishing. ISBN 978-1-351-20325-8.
  22. 22.0 22.1 Tsu‐Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Retrieved 9 July 2019.
  23. Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. p. 11. ISBN 9780387717517.
  24. "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Retrieved 4 July 2019.
  25. 25.0 25.1 "The Breakthrough Advantage for FPGAs with Tri-Gate Technology" (PDF). Intel. 2014. Retrieved 4 July 2019.
  26. Hisamoto, D.; Kaga, T.; Kawamoto, Y.; Takeda, E. (December 1989). "A fully depleted lean-channel transistor (DELTA)-a novel vertical ultra thin SOI MOSFET". International Technical Digest on Electron Devices Meeting: 833–836. doi:10.1109/IEDM.1989.74182. S2CID 114072236.
  27. Shahidi, Ghavam G.; Davari, Bijan; Taur, Yuan; Warnock, James D.; Wordeman, Matthew R.; McFarland, P. A.; Mader, S. R.; Rodriguez, M. D. (December 1990). "Fabrication of CMOS on ultrathin SOI obtained by epitaxial lateral overgrowth and chemical-mechanical polishing". International Technical Digest on Electron Devices: 587–590. doi:10.1109/IEDM.1990.237130. S2CID 114249312.
  28. Tiwari, S.; Rana, F.; Wei Chen; Chan, K.; Hanafi, H. (1995). "A low power 77 K nano-memory with single electron nano-crystal storage". 1995 53rd Annual Device Research Conference Digest. IEEE: 50–51. doi:10.1109/DRC.1995.496266. ISBN 978-0-7803-2788-7.
  29. Tiwari, S.; Rana, F.; Chan, K.; Hanafi, H.; Wei Chan; Buchanan, D. (1995). "Volatile and non-volatile memories in silicon with nano-crystal storage". Proceedings of International Electron Devices Meeting. IEEE: 521–524. doi:10.1109/IEDM.1995.499252. ISBN 978-0-7803-2700-9.
  30. Graaff, Henk C. de, ed. (1995). ESSDERC '95: proceedings of the 25th European Solid State Device Research Conference, The Netherlands Congress Centre, The Hague, The Netherlands, 25th - 27th September 1995. Gif sur Yvette: Éd. Frontières. ISBN 978-2-86332-182-9.
  31. Hanafi, H.I.; Tiwari, S.; Khan, I. (September 1996). "Fast and long retention-time nano-crystal memory". IEEE Transactions on Electron Devices. 43 (9): 1553–1558. doi:10.1109/16.535349.
  32. Banerjee, Writam (2018-10-09). Nanocrystals in Nonvolatile Memory. Jenny Stanford Publishing. ISBN 978-1-351-20325-8.
  33. 33.0 33.1 Leobandung, Effendi; Chou, Stephen Y. (1996). "Reduction of short channel effects in SOI MOSFETs with 35 nm channel width and 70 nm channel length". 1996 54th Annual Device Research Conference Digest: 110–111. doi:10.1109/DRC.1996.546334. ISBN 0-7803-3358-6. S2CID 30066882.
  34. Leobandung, Effendi (June 1996). Nanoscale MOSFETs and single charge transistors on SOI. Minneapolis, MN: U of Minnesota, Ph.D. Thesis. p. 72.
  35. Waldner, Jean-Baptiste (2007). Nanocomputers and Swarm Intelligence. London: ISTE. p. 26. ISBN 978-1-84704-002-2.
  36. "Still Room at the Bottom (nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology)", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012, retrieved 6 July 2019
  37. Lee, Hyunjin; et al. (2006), "Sub-5nm All-Around Gate FinFET for Ultimate Scaling", Symposium on VLSI Technology, 2006: 58–59, doi:10.1109/VLSIT.2006.1705215, hdl:10203/698, ISBN 978-1-4244-0005-8, S2CID 26482358
  38. 38.0 38.1 "History: 2010s". SK Hynix. Retrieved 8 July 2019.
  39. "16/12nm Technology". TSMC. Retrieved 30 June 2019.
  40. 40.0 40.1 "Samsung Mass Producing 128Gb 3-bit MLC NAND Flash". Tom's Hardware. 11 April 2013. Retrieved 21 June 2019.
  41. 41.0 41.1 "7nm Technology". TSMC. Retrieved 30 June 2019.
  42. Shilov, Anton. "Samsung Completes Development of 5nm EUV Process Technology". www.anandtech.com. Retrieved 2019-05-31.
  43. Patterson, Alan (2 Oct 2017), "TSMC Aims to Build World's First 3-nm Fab", www.eetimes.com
  44. Armasu, Lucian (11 January 2019), "Samsung Plans Mass Production of 3nm GAAFET Chips in 2021", www.tomshardware.com
  45. "Angstrom". Collins English Dictionary. Retrieved 2019-03-02.
  46. Sze, Simon M. (2002). Semiconductor Devices: Physics and Technology (PDF) (2nd ed.). Wiley. p. 4. ISBN 0-471-33372-7.
  47. Atalla, Mohamed M.; Kahng, Dawon (June 1960). "Silicon–silicon dioxide field induced surface devices". IRE-AIEE Solid State Device Research Conference. Carnegie Mellon University Press.
  48. Voinigescu, Sorin (2013). High-Frequency Integrated Circuits. Cambridge University Press. p. 164. ISBN 9780521873024.
  49. Brody, T. P.; Kunig, H. E. (October 1966). "A HIGH‐GAIN InAs THIN‐FILM TRANSISTOR". Applied Physics Letters. 9 (7): 259–260. Bibcode:1966ApPhL...9..259B. doi:10.1063/1.1754740. ISSN 0003-6951.
  50. Woodall, Jerry M. (2010). Fundamentals of III-V Semiconductor MOSFETs. Springer Science & Business Media. pp. 2–3. ISBN 9781441915474.
  51. 51.0 51.1 Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 330. ISBN 9783540342588.
  52. Dennard, Robert H.; Gaensslen, F. H.; Yu, Hwa-Nien; Rideout, V. L.; Bassous, E.; LeBlanc, A. R. (October 1974). "Design of ion-implanted MOSFET's with very small physical dimensions" (PDF). IEEE Journal of Solid-State Circuits. 9 (5): 256–268. Bibcode:1974IJSSC...9..256D. CiteSeerX 10.1.1.334.2417. doi:10.1109/JSSC.1974.1050511. S2CID 283984.
  53. Hori, Ryoichi; Masuda, Hiroo; Minato, Osamu; Nishimatsu, Shigeru; Sato, Kikuji; Kubo, Masaharu (September 1975). "Short Channel MOS-IC Based on Accurate Two Dimensional Device Design". Japanese Journal of Applied Physics. 15 (S1): 193. doi:10.7567/JJAPS.15S1.193. ISSN 1347-4065.
  54. Kubo, Masaharu; Hori, Ryoichi; Minato, Osamu; Sato, Kikuji (February 1976). "A threshold voltage controlling circuit for short channel MOS integrated circuits". 1976 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XIX: 54–55. doi:10.1109/ISSCC.1976.1155515. S2CID 21048622.
  55. Hunter, William R.; Ephrath, L. M.; Cramer, Alice; Grobman, W. D.; Osburn, C. M.; Crowder, B. L.; Luhn, H. E. (April 1979). "1 /spl mu/m MOSFET VLSI technology. V. A single-level polysilicon technology using electron-beam lithography". IEEE Journal of Solid-State Circuits. 14 (2): 275–281. doi:10.1109/JSSC.1979.1051174. S2CID 26389509.
  56. 56.0 56.1 56.2 56.3 56.4 Gealow, Jeffrey Carl (10 August 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). CORE. Massachusetts Institute of Technology. pp. 149–166. Retrieved 25 June 2019.
  57. Chwang, R. J. C.; Choi, M.; Creek, D.; Stern, S.; Pelley, P. H.; Schutz, Joseph D.; Bohr, M. T.; Warkentin, P. A.; Yu, K. (February 1983). "A 70ns high density CMOS DRAM". 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XXVI: 56–57. doi:10.1109/ISSCC.1983.1156456. S2CID 29882862.
  58. Mano, Tsuneo; Yamada, J.; Inoue, Junichi; Nakajima, S. (February 1983). "Submicron VLSI memory circuits". 1983 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XXVI: 234–235. doi:10.1109/ISSCC.1983.1156549. S2CID 42018248.
  59. Hu, G. J.; Taur, Yuan; Dennard, Robert H.; Terman, L. M.; Ting, Chung-Yu (December 1983). "A self-aligned 1-μm CMOS technology for VLSI". 1983 International Electron Devices Meeting: 739–741. doi:10.1109/IEDM.1983.190615. S2CID 20070619.
  60. Kobayashi, Toshio; Horiguchi, Seiji; Kiuchi, K. (December 1984). "Deep-submicron MOSFET characteristics with 5 nm gate oxide". 1984 International Electron Devices Meeting: 414–417. doi:10.1109/IEDM.1984.190738. S2CID 46729489.
  61. Kobayashi, Toshio; Horiguchi, Seiji; Miyake, M.; Oda, M.; Kiuchi, K. (December 1985). "Extremely high transconductance (above 500 mS/mm) MOSFET with 2.5 nm gate oxide". 1985 International Electron Devices Meeting: 761–763. doi:10.1109/IEDM.1985.191088. S2CID 22309664.
  62. Chou, Stephen Y.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1985). "Observation of electron velocity overshoot in sub-100-nm-channel MOSFET's in Silicon". IEEE Electron Device Letters. 6 (12): 665–667. Bibcode:1985IEDL....6..665C. doi:10.1109/EDL.1985.26267. S2CID 28493431.
  63. Chou, Stephen Y.; Smith, Henry I.; Antoniadis, Dimitri A. (January 1986). "Sub‐100‐nm channel‐length transistors fabricated using x‐ray lithography". Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 4 (1): 253–255. Bibcode:1986JVSTB...4..253C. doi:10.1116/1.583451. ISSN 0734-211X.
  64. Lee, Han-Sheng; Puzio, L.C. (November 1986). "The electrical properties of subquarter-micrometer gate-length MOSFET's". IEEE Electron Device Letters. 7 (11): 612–614. Bibcode:1986IEDL....7..612H. doi:10.1109/EDL.1986.26492. S2CID 35142126.
  65. Shahidi, Ghavam G.; Antoniadis, Dimitri A.; Smith, Henry I. (December 1986). "Electron velocity overshoot at 300 K and 77 K in silicon MOSFETs with submicron channel lengths". 1986 International Electron Devices Meeting: 824–825. doi:10.1109/IEDM.1986.191325. S2CID 27558025.
  66. Chou, Stephen Y.; Smith, Henry I.; Antoniadis, Dimitri A. (January 1986). "Sub‐100‐nm channel‐length transistors fabricated using x‐ray lithography". Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena. 4 (1): 253–255. Bibcode:1986JVSTB...4..253C. doi:10.1116/1.583451. ISSN 0734-211X.
  67. Sumi, T.; Taniguchi, Tsuneo; Kishimoto, Mikio; Hirano, Hiroshige; Kuriyama, H.; Nishimoto, T.; Oishi, H.; Tetakawa, S. (1987). "A 60ns 4Mb DRAM in a 300mil DIP". 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XXX: 282–283. doi:10.1109/ISSCC.1987.1157106. S2CID 60783996.
  68. Mano, Tsuneo; Yamada, J.; Inoue, Junichi; Nakajima, S.; Matsumura, Toshiro; Minegishi, K.; Miura, K.; Matsuda, T.; Hashimoto, C.; Namatsu, H. (1987). "Circuit technologies for 16Mb DRAMs". 1987 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. XXX: 22–23. doi:10.1109/ISSCC.1987.1157158. S2CID 60984466.
  69. Davari, Bijan; Ting, Chung-Yu; Ahn, Kie Y.; Basavaiah, S.; Hu, Chao-Kun; Taur, Yuan; Wordeman, Matthew R.; Aboelfotoh, O. (May 1987). "Submicron Tungsten Gate MOSFET with 10 nm Gate Oxide". 1987 Symposium on VLSI Technology. Digest of Technical Papers: 61–62.
  70. Kobayashi, Toshio; Miyake, M.; Deguchi, K.; Kimizuka, M.; Horiguchi, Seiji; Kiuchi, K. (1987). "Subhalf-micrometer p-channel MOSFET's with 3.5-nm gate Oxide fabricated using X-ray lithography". IEEE Electron Device Letters. 8 (6): 266–268. Bibcode:1987IEDL....8..266M. doi:10.1109/EDL.1987.26625. S2CID 38828156.
  71. Hanafi, Hussein I.; Dennard, Robert H.; Taur, Yuan; Haddad, Nadim F.; Sun, J. Y. C.; Rodriguez, M. D. (September 1987). "0.5 μm CMOS Device Design and Characterization". ESSDERC '87: 17th European Solid State Device Research Conference: 91–94.
  72. Inoue, M.; Kotani, H.; Yamada, T.; Yamauchi, Hiroyuki; Fujiwara, A.; Matsushima, J.; Akamatsu, Hironori; Fukumoto, M.; Kubota, M.; Nakao, I.; Aoi (1988). "A 16mb Dram with an Open Bit-Line Architecture". 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers: 246–. doi:10.1109/ISSCC.1988.663712. S2CID 62034618.
  73. Shahidi, Ghavam G.; Davari, Bijan; Taur, Yuan; Warnock, James D.; Wordeman, Matthew R.; McFarland, P. A.; Mader, S. R.; Rodriguez, M. D. (December 1990). "Fabrication of CMOS on ultrathin SOI obtained by epitaxial lateral overgrowth and chemical-mechanical polishing". International Technical Digest on Electron Devices: 587–590. doi:10.1109/IEDM.1990.237130. S2CID 114249312.
  74. Ono, Mizuki; Saito, Masanobu; Yoshitomi, Takashi; Fiegna, Claudio; Ohguro, Tatsuya; Iwai, Hiroshi (December 1993). "Sub-50 nm gate length n-MOSFETs with 10 nm phosphorus source and drain junctions". Proceedings of IEEE International Electron Devices Meeting: 119–122. doi:10.1109/IEDM.1993.347385. ISBN 0-7803-1450-6. S2CID 114633315.
  75. Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio; Ochiai, Yukinori; Fujita, Jun'ichi; Matsui, Shinji; Sone, Jun'ichi (1997). "Proposal of Pseudo Source and Drain MOSFETs for Evaluating 10-nm Gate MOSFETs". Japanese Journal of Applied Physics. 36 (3S): 1569. Bibcode:1997JaJAP..36.1569K. doi:10.1143/JJAP.36.1569. ISSN 1347-4065.
  76. Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio; Ochiai, Yukinori; Fujita, Jun-ichi; Matsui, Shinji; Sone, J. (1997). "Transistor operations in 30-nm-gate-length EJ-MOSFETs". 1997 55th Annual Device Research Conference Digest: 14–15. doi:10.1109/DRC.1997.612456. ISBN 0-7803-3911-8. S2CID 38105606.
  77. Ahmed, Khaled Z.; Ibok, Effiong E.; Song, Miryeong; Yeap, Geoffrey; Xiang, Qi; Bang, David S.; Lin, Ming-Ren (1998). "Performance and reliability of sub-100 nm MOSFETs with ultra thin direct tunneling gate oxides". 1998 Symposium on VLSI Technology Digest of Technical Papers (Cat. No.98CH36216): 160–161. doi:10.1109/VLSIT.1998.689240. ISBN 0-7803-4770-6. S2CID 109823217.
  78. Ahmed, Khaled Z.; Ibok, Effiong E.; Song, Miryeong; Yeap, Geoffrey; Xiang, Qi; Bang, David S.; Lin, Ming-Ren (1998). "Sub-100 nm nMOSFETs with direct tunneling thermal, nitrous and nitric oxides". 56th Annual Device Research Conference Digest (Cat. No.98TH8373): 10–11. doi:10.1109/DRC.1998.731099. ISBN 0-7803-4995-4. S2CID 1849364.
  79. 79.0 79.1 79.2 Tsu‐Jae King, Liu (June 11, 2012). "FinFET: History, Fundamentals and Future". University of California, Berkeley. Symposium on VLSI Technology Short Course. Archived from the original on 28 May 2016. Retrieved 9 July 2019.
  80. Hisamoto, Digh; Hu, Chenming; Liu, Tsu-Jae King; Bokor, Jeffrey; Lee, Wen-Chin; Kedzierski, Jakub; Anderson, Erik; Takeuchi, Hideki; Asano, Kazuya (December 1998). "A folded-channel MOSFET for deep-sub-tenth micron era". International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217): 1032–1034. doi:10.1109/IEDM.1998.746531. ISBN 0-7803-4774-9. S2CID 37774589.
  81. Schwierz, Frank; Wong, Hei; Liou, Juin J. (2010). Nanometer CMOS. Pan Stanford Publishing. p. 17. ISBN 9789814241083.
  82. Kawaura, Hisao; Sakamoto, Toshitsugu; Baba, Toshio (12 June 2000). "Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors". Applied Physics Letters. 76 (25): 3810–3812. Bibcode:2000ApPhL..76.3810K. doi:10.1063/1.126789. ISSN 0003-6951.
  83. Hu, Chenming; Choi, Yang‐Kyu; Lindert, N.; Xuan, P.; Tang, S.; Ha, D.; Anderson, E.; Bokor, J.; Tsu-Jae King, Liu (December 2001). "Sub-20 nm CMOS FinFET technologies". International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224): 19.1.1–19.1.4. doi:10.1109/IEDM.2001.979526. ISBN 0-7803-7050-3. S2CID 8908553.
  84. Doris, Bruce B.; Dokumaci, Omer H.; Ieong, Meikei K.; Mocuta, Anda; Zhang, Ying; Kanarsky, Thomas S.; Roy, R. A. (December 2002). "Extreme scaling with ultra-thin Si channel MOSFETs". Digest. International Electron Devices Meeting: 267–270. doi:10.1109/IEDM.2002.1175829. ISBN 0-7803-7462-2. S2CID 10151651.
  85. 85.0 85.1 Schwierz, Frank; Wong, Hei; Liou, Juin J. (2010). Nanometer CMOS. Pan Stanford Publishing. p. 17. ISBN 9789814241083.
  86. "IBM claims world's smallest silicon transistor – TheINQUIRER". Theinquirer.net. 2002-12-09. Retrieved 7 December 2017.
  87. Ahmed, Shibly; Bell, Scott; Tabery, Cyrus; Bokor, Jeffrey; Kyser, David; Hu, Chenming; Liu, Tsu-Jae King; Yu, Bin; Chang, Leland (December 2002). "FinFET scaling to 10 nm gate length" (PDF). Digest. International Electron Devices Meeting: 251–254. CiteSeerX 10.1.1.136.3757. doi:10.1109/IEDM.2002.1175825. ISBN 0-7803-7462-2. S2CID 7106946.
  88. Wakabayashi, Hitoshi; Yamagami, Shigeharu; Ikezawa, Nobuyuki; Ogura, Atsushi; Narihiro, Mitsuru; Arai, K.; Ochiai, Y.; Takeuchi, K.; Yamamoto, T.; Mogami, T. (December 2003). "Sub-10-nm planar-bulk-CMOS devices using lateral junction control". IEEE International Electron Devices Meeting 2003: 20.7.1–20.7.3. doi:10.1109/IEDM.2003.1269446. ISBN 0-7803-7872-5. S2CID 2100267.
  89. Wakabayashi, Hitoshi; Yamagami, Shigeharu; Ikezawa, Nobuyuki; Ogura, Atsushi; Narihiro, Mitsuru; Arai, K.; Ochiai, Y.; Takeuchi, K.; Yamamoto, T.; Mogami, T. (December 2003). "Sub-10-nm planar-bulk-CMOS devices using lateral junction control". IEEE International Electron Devices Meeting 2003: 20.7.1–20.7.3. doi:10.1109/IEDM.2003.1269446. ISBN 0-7803-7872-5. S2CID 2100267.
  90. "NEC test-produces world's smallest transistor". Thefreelibrary.com. Retrieved 7 December 2017.
  91. Lee, Hyunjin; Choi, Yang-Kyu; Yu, Lee-Eun; Ryu, Seong-Wan; Han, Jin-Woo; Jeon, K.; Jang, D.Y.; Kim, Kuk-Hwan; Lee, Ju-Hyun; et al. (June 2006), "Sub-5nm All-Around Gate FinFET for Ultimate Scaling", Symposium on VLSI Technology, 2006: 58–59, doi:10.1109/VLSIT.2006.1705215, hdl:10203/698, ISBN 978-1-4244-0005-8, S2CID 26482358
  92. "Still Room at the Bottom (nanometer transistor developed by Yang-kyu Choi from the Korea Advanced Institute of Science and Technology )", Nanoparticle News, 1 April 2006, archived from the original on 6 November 2012
  93. "MEMS Overview". Retrieved 2009-06-06.
  94. Melosh, N.; Boukai, Abram; Diana, Frederic; Gerardot, Brian; Badolato, Antonio; Petroff, Pierre; Heath, James R. (2003). "Ultrahigh density nanowire lattices and circuits". Science. 300 (5616): 112–5. Bibcode:2003Sci...300..112M. doi:10.1126/science.1081940. PMID 12637672. S2CID 6434777.
  95. Das, S.; Gates, A.J.; Abdu, H.A.; Rose, G.S.; Picconatto, C.A.; Ellenbogen, J.C. (2007). "Designs for Ultra-Tiny, Special-Purpose Nanoelectronic Circuits". IEEE Transactions on Circuits and Systems I. 54 (11): 11. doi:10.1109/TCSI.2007.907864. S2CID 13575385.
  96. Goicoechea, J.; Zamarreñoa, C.R.; Matiasa, I.R.; Arregui, F.J. (2007). "Minimizing the photobleaching of self-assembled multilayers for sensor applications". Sensors and Actuators B: Chemical. 126 (1): 41–47. doi:10.1016/j.snb.2006.10.037.
  97. Petty, M.C.; Bryce, M.R.; Bloor, D. (1995). An Introduction to Molecular Electronics. London: Edward Arnold. ISBN 978-0-19-521156-6.
  98. Aviram, A.; Ratner, M. A. (1974). "Molecular Rectifier". Chemical Physics Letters. 29 (2): 277–283. Bibcode:1974CPL....29..277A. doi:10.1016/0009-2614(74)85031-1.
  99. Aviram, A. (1988). "Molecules for memory, logic, and amplification". Journal of the American Chemical Society. 110 (17): 5687–5692. doi:10.1021/ja00225a017.
  100. Postma, Henk W. Ch.; Teepen, Tijs; Yao, Zhen; Grifoni, Milena; Dekker, Cees (2001). "Carbon nanotube single-electron transistors at room temperature". Science. 293 (5527): 76–79. Bibcode:2001Sci...293...76P. doi:10.1126/science.1061797. PMID 11441175. S2CID 10977413.
  101. Xiang, Jie; Lu, Wei; Hu, Yongjie; Wu, Yue; Yan Hao; Lieber, Charles M. (2006). "Ge/Si nanowire heterostructures as highperformance field-effect transistors". Nature. 441 (7092): 489–493. Bibcode:2006Natur.441..489X. doi:10.1038/nature04796. PMID 16724062. S2CID 4408636.
  102. Jensen, K.; Weldon, J.; Garcia, H.; Zettl A. (2007). "Nanotube Radio". Nano Lett. 7 (11): 3508–3511. Bibcode:2007NanoL...7.3508J. doi:10.1021/nl0721113. PMID 17973438.
  103. Tian, Bozhi; Zheng, Xiaolin; Kempa, Thomas J.; Fang, Ying; Yu, Nanfang; Yu, Guihua; Huang, Jinlin; Lieber, Charles M. (2007). "Coaxial silicon nanowires as solar cells and nanoelectronic power sources". Nature. 449 (7164): 885–889. Bibcode:2007Natur.449..885T. doi:10.1038/nature06181. PMID 17943126. S2CID 2688078.
  104. "Power from blood could lead to 'human batteries'". Sydney Morning Herald. August 4, 2003. Retrieved 2008-10-08.
  105. LaVan, D.A.; McGuire, Terry & Langer, Robert (2003). "Small-scale systems for in vivo drug delivery". Nat. Biotechnol. 21 (10): 1184–1191. doi:10.1038/nbt876. PMID 14520404. S2CID 1490060.
  106. Grace, D. (2008). "Special Feature: Emerging Technologies". Medical Product Manufacturing News. 12: 22–23. Archived from the original on 2008-06-12.
  107. Saito, S. (1997). "Carbon Nanotubes for Next-Generation Electronics Devices". Science. 278 (5335): 77–78. doi:10.1126/science.278.5335.77. S2CID 137586409.
  108. Cavalcanti, A.; Shirinzadeh, B.; Freitas Jr, Robert A. & Hogg, Tad (2008). "Nanorobot architecture for medical target identification". Nanotechnology. 19 (1): 015103(15pp). Bibcode:2008Nanot..19a5103C. doi:10.1088/0957-4484/19/01/015103.
  109. Cheng, Mark Ming-Cheng; Cuda, Giovanni; Bunimovich, Yuri L; Gaspari, Marco; Heath, James R; Hill, Haley D; Mirkin,Chad A; Nijdam, A Jasper; Terracciano, Rosa; Thundat, Thomas; Ferrari, Mauro (2006). "Nanotechnologies for biomolecular detection and medical diagnostics". Current Opinion in Chemical Biology. 10 (1): 11–19. doi:10.1016/j.cbpa.2006.01.006. PMID 16418011.
  110. Patolsky, F.; Timko, B.P.; Yu, G.; Fang, Y.; Greytak, A.B.; Zheng, G.; Lieber, C.M. (2006). "Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays". Science. 313 (5790): 1100–1104. Bibcode:2006Sci...313.1100P. doi:10.1126/science.1128640. PMID 16931757. S2CID 3178344.
  111. Frist, W.H. (2005). "Health care in the 21st century". N. Engl. J. Med. 352 (3): 267–272. doi:10.1056/NEJMsa045011. PMID 15659726.
  112. Cavalcanti, A.; Shirinzadeh, B.; Zhang, M. & Kretly, L.C. (2008). "Nanorobot Hardware Architecture for Medical Defense" (PDF). Sensors. 8 (5): 2932–2958. doi:10.3390/s8052932. PMC 3675524. PMID 27879858.{{cite journal}}: CS1 maint: unflagged free DOI (link)
  113. Couvreur, P. & Vauthier, C. (2006). "Nanotechnology: intelligent design to treat complex disease". Pharm. Res. 23 (7): 1417–1450. doi:10.1007/s11095-006-0284-8. PMID 16779701. S2CID 1520698.

Further reading[]

External links[]

Advertisement