Engineering
Advertisement
MOSFET Structure

Metal-oxide-semiconductor field-effect transistor (MOSFET), showing gate (G), body (B), source (S) and drain (D) terminals. The gate is separated from the body by an insulating layer (pink).

A transistor is a three-terminal semiconductor device that can be used for amplification, switching, voltage stabilization, signal modulation and many other functions. The transistor is the fundamental building block of both digital and analog integrated circuits—the circuitry that governs the operation of computers, cellular phones, and all other modern electronics.

A transistor is a semiconductor device used to amplify or switch electronic signals and electrical power. It is composed of semiconductor material usually with at least three terminals for connection to an external circuit. A voltage or current applied to one pair of the transistor's terminals controls the current through another pair of terminals. Because the controlled (output) power can be higher than the controlling (input) power, a transistor can amplify a signal. Today, some transistors are packaged individually, but many more are found embedded in integrated circuits.

Austro-Hungarian physicist Julius Edgar Lilienfeld proposed the concept of a field-effect transistor in 1926, but it was not possible to actually construct a working device at that time.[1] The first working device to be built was a point-contact transistor invented in 1947 by American physicists John Bardeen and Walter Brattain while working under William Shockley at Bell Labs. They shared the 1956 Nobel Prize in Physics for their achievement.[2] The most widely used transistor is the metal–oxide–semiconductor field-effect transistor (MOS transistor), which was invented by Egyptian engineer Mohamed Atalla with Korean engineer Dawon Kahng at Bell Labs in 1959.[3][4][5] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[6]

Transistors revolutionized the field of electronics, and paved the way for smaller and cheaper radios, calculators, and computers, among other things. The first transistor and the MOS transistor (MOSFET) are on the list of IEEE milestones in electronics.[7][8] The MOS transistor is the fundamental building block of modern electronic devices, and is ubiquitous in modern electronic systems.[9] An estimated total of 13 sextillion MOS transistors have been manufactured between 1960 and 2018 (at least 99.9% of all transistors), making the MOSFET the most widely manufactured device in history.[10]

Most transistors are made from very pure silicon, and some from germanium, but certain other semiconductor materials can also be used. A transistor may have only one kind of charge carrier, in a field-effect transistor, or may have two kinds of charge carriers in bipolar junction transistor devices. Compared with the vacuum tube, transistors are generally smaller, and require less power to operate. Certain vacuum tubes have advantages over transistors at very high operating frequencies or high operating voltages. Many types of transistors are made to standardized specifications by multiple manufacturers.

Introduction[]

The word transistor, coined by John Robinson Pierce in 1949, is a foreshortening of trans-resistance or transfer varistor (see the history section below).

Transistors are divided into two main categories: bipolar junction transistors (BJTs) and field effect transistors (FETs). Application of current in BJTs and voltage in FETs between the input and common terminals increases the conductivity between the common and output terminals, thereby controlling current flow between them. For more details on the operation of these two types of transistors, see field effect transistor and bipolar junction transistor.

In analog circuits, transistors are used in amplifiers, (direct current amplifiers, audio amplifiers, radio frequency amplifiers), and linear regulated power supplies. Transistors are also used in digital circuits where they function as electronic switches. Digital circuits include logic gates, random access memory (RAM), microprocessors, and digital signal processors (DSPs).

History[]

The first patents for the transistor principle were registered in Germany in 1928 by Julius Edgar Lilienfeld. In 1934 German physicist Dr. Oskar Heil patented the field-effect transistor. It is not clear whether either design was ever built, and this is generally considered unlikely.

The thermionic triode, a vacuum tube invented in 1907, enabled amplified radio technology and long-distance telephony. The triode, however, was a fragile device that consumed a substantial amount of power. In 1909, physicist William Eccles discovered the crystal diode oscillator.[11] Austro-Hungarian physicist Julius Edgar Lilienfeld filed a patent for a field-effect transistor (FET) in Canada in 1925,[12] which was intended to be a solid-state replacement for the triode.[13][14] Lilienfeld also filed identical patents in the United States in 1926[15] and 1928.[16][17] However, Lilienfeld did not publish any research articles about his devices nor did his patents cite any specific examples of a working prototype. Because the production of high-quality semiconductor materials was still decades away, Lilienfeld's solid-state amplifier ideas would not have found practical use in the 1920s and 1930s, even if such a device had been built.[18] In 1934, German inventor Oskar Heil patented a similar device in Europe.[19]

Bipolar transistors[]

On 22 December 1947 William Shockley, John Bardeen and Walter Brattain succeeded in building the first practical point-contact transistor at Bell Labs. This work followed from their war-time efforts to produce extremely pure germanium "crystal" mixer diodes, used in radar units as a frequency mixer element in microwave radar receivers. Early tube-based technology did not switch fast enough for this role, leading the Bell team to use solid state diodes instead. With this knowledge in hand they turned to the design of a triode, but found this was not at all easy. Bardeen eventually developed a new branch of surface physics to account for the "odd" behaviour they saw, and Bardeen and Brattain eventually succeeded in building a working device.

Bell Telephone Laboratories needed a generic name for the new invention: "Semiconductor Triode", "Solid Triode", "Surface States Triode", "Crystal Triode" and "Iotatron" were all considered, but "transistor," coined by John R. Pierce, won an internal ballot. The rationale for the name is described in the following extract from the company's Technical Memorandum calling for votes:

Template:Quotation

Pierce recalled the naming somewhat differently:

Template:Quotation

Bell put the transistor into production at Western Electric in Allentown, Pennsylvania. They also licensed it to a number of other electronics companies, including Texas Instruments, who produced a limited run of transistor radios as a sales tool. Another company liked the idea and also decided to take out a license, introducing their own radio under the brand name Sony. Early transistors were "unstable" and only suitable for low-power, low-frequency applications, but as transistor design developed, these problems were slowly overcome. Over the next two decades, transistors gradually replaced the earlier vacuum tubes in most applications and later made possible many new devices such as integrated circuits and personal computers.

Shockley, Bardeen, and Brattain were honored with the Nobel Prize in Physics "for their researches on semiconductors and their discovery of the transistor effect". Bardeen would go on to win a second Nobel in physics, one of only two people to receive more than one in the same discipline, for his work on the exploration of superconductivity.

In August 1948 German physicists Herbert F. Mataré (1912– ) and Heinrich Walker (ca. 1912–1981), working at Compagnie des Freins et Signaux Westinghouse in Paris, France applied for a patent on an amplifier based on the minority carrier injection process which they called the "transistron." Since Bell Labs did not make a public announcement of the transistor until June 1948, the transistron was considered to be independently developed. Mataré had first observed transconductance effects during the manufacture of germanium duodiodes for German radar equipment during WWII. Transistrons were commercially manufactured for the French telephone company and military, and in 1953 a solid-state radio receiver with four transistrons was demonstrated at the Düsseldorf Radio Fair.

Dynamic transistor characteristic could be displayed as curves on an early Transistor Curve Tracer.

MOS transistor[]

Atalla1963
Dawon Kahng
Mohamed Atalla (above) and Dawon Kahng (below) invented the MOS transistor at Bell Labs in 1959.

Semiconductor companies initially focused on junction transistors in the early years of the semiconductor industry. However, the junction transistor was a relatively bulky device that was difficult to manufacture on a mass-production basis, which limited it to a number of specialised applications. Field-effect transistors (FETs) were theorized as potential alternatives to junction transistors, but researchers could not get FETs to work properly, largely due to the troublesome surface state barrier that prevented the external electric field from penetrating into the material.[20]

In the 1950s, Egyptian engineer Mohamed Atalla investigated the surface properties of silicon semiconductors at Bell Labs, where he proposed a new method of semiconductor device fabrication, coating a silicon wafer with an insulating layer of silicon oxide so that electricity could reliably penetrate to the conducting silicon below, overcoming the surface states that prevented electricity from reaching the semiconducting layer. This is known as surface passivation, a method that became critical to the semiconductor industry as it later made possible the mass-production of silicon integrated circuits.[21][22] He presented his findings in 1957.[23] Building on his surface passivation method, he developed the metal–oxide–semiconductor (MOS) process.[21] He proposed the MOS process could be used to build the first working silicon FET, which he began working on building with the help of his Korean colleague Dawon Kahng.[21]

The metal–oxide–semiconductor field-effect transistor (MOSFET), also known as the MOS transistor, was invented by Mohamed Atalla and Dawon Kahng in 1959.[24][25] The MOSFET was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses.[20] With its high scalability,[26] and much lower power consumption and higher density than bipolar junction transistors,[27] the MOSFET made it possible to build high-density integrated circuits,[28] allowing the integration of more than 10,000 transistors in a single IC.[29]

CMOS (complementary MOS) was invented by Chih-Tang Sah and Frank Wanlass at Fairchild Semiconductor in 1963.[30] The first report of a floating-gate MOSFET was made by Dawon Kahng and Simon Sze in 1967.[31] A double-gate MOSFET was first demonstrated in 1984 by Electrotechnical Laboratory researchers Toshihiro Sekigawa and Yutaka Hayashi.[32][33] FinFET (fin field-effect transistor), a type of 3D non-planar multi-gate MOSFET, originated from the research of Digh Hisamoto and his team at Hitachi Central Research Laboratory in 1989.[34][35]

Importance[]

The transistor is considered by many to be one of the greatest inventions in modern history, ranking in importance with the printing press, automobile and telephone. It is the key active component in practically all modern electronics. Its importance in today's society rests on its ability to be mass produced using a highly automated process (fabrication) that achieves vanishingly low per-transistor costs.

Although millions of individual (known as discrete) transistors are still used, the vast majority of transistors are fabricated into integrated circuits (also called microchips or simply chips) along with diodes, resistors, capacitors and other electronic components to produce complete electronic circuits. A logic gate comprises about twenty transistors whereas an advanced microprocessor, as of 2006, can use as many as 1.7 billion transistors (MOSFETs) [1].

The transistor's low cost, flexibility and reliability have made it a universal device for non-mechanical tasks, such as digital computing. Transistorized circuits have replaced electromechanical devices for the control of appliances and machinery as well. It is often less expensive and more effective to use a standard microcontroller and write a computer program to carry out a control function than to design an equivalent mechanical control function.

Because of the low cost of transistors and hence digital computers, there is a trend to digitize information. With digital computers offering the ability to quickly find, sort and process digital information, more and more effort has been put into making information digital. As a result, today, much media data is delivered in digital form, finally being converted and presented in analog form by computers. Areas influenced by the Digital Revolution include television, radio, and newspapers.

MOS revolution[]

The MOSFET (metal–oxide–semiconductor field-effect transistor), also known as the MOS transistor, is by far the most widely used transistor, used in applications ranging from computers and electronics[36] to communications technology such as smartphones.[37] The MOSFET has been considered to be the most important transistor,[38] possibly the most important invention in electronics,[39] and the birth of modern electronics.[40] The MOS transistor has been the fundamental building block of modern digital electronics since the late 20th century, paving the way for the digital age.[41] The US Patent and Trademark Office calls it a "groundbreaking invention that transformed life and culture around the world".[37] Its importance in today's society rests on its ability to be mass-produced using a highly automated process (semiconductor device fabrication) that achieves astonishingly low per-transistor costs.

The invention of the first transistor at Bell Labs was named an IEEE Milestone in 2009.[42] The list of IEEE Milestones also includes the inventions of the junction transistor in 1948 and the MOSFET in 1959.[43]

Although several companies each produce over a billion individually packaged (known as discrete) MOS transistors every year,[44] the vast majority of transistors are now produced in integrated circuits (often shortened to IC, microchips or simply chips), along with diodes, resistors, capacitors and other electronic components, to produce complete electronic circuits. A logic gate consists of up to about twenty transistors whereas an advanced microprocessor, as of 2009, can use as many as 3 billion transistors (MOSFETs).[45] "About 60 million transistors were built in 2002… for [each] man, woman, and child on Earth."[46]

The MOS transistor is the most widely manufactured device in history.[47] As of 2013, billions of transistors are manufactured every day, nearly all of which are MOSFET devices.[48] Between 1960 and 2018, an estimated total of 13 sextillion MOS transistors have been manufactured, accounting for at least 99.9% of all transistors.[47]

Types[]

Transistors are categorized by:

  • Semiconductor material: germanium, silicon, gallium arsenide, silicon carbide
  • Structure: BJT, JFET, IGFET (MOSFET), IGBT, "other types"
  • Polarity: NPN, PNP, N-channel, P-channel
  • Maximum power rating: low, medium, high
  • Maximum operating frequency: low, medium, high, radio frequency (RF), microwave (The maximum effective frequency of a transistor is denoted by the term , an abbreviation for "frequency of transition." The frequency of transition is the frequency at which the transistor yields unity gain).
  • Application: switch, general purpose, audio, high voltage, super-beta, matched pair
  • Physical packaging: through hole metal, through hole plastic, surface mount, ball grid array

Thus, a particular transistor may be described as: silicon, surface mount, BJT, NPN, low power, high frequency switch.

Bipolar junction transistor[]

The bipolar junction transistor (BJT) was the first type of transistor to be mass-produced. Bipolar transistors are so named because they conduct by using both majority and minority carriers. The three terminals are named emitter, base and collector. Two p-n junctions exist inside a BJT: the base/collector junction and base/emitter junction. The BJT is commonly described as a current-operated device because the emitter/collector current is controlled by the current flowing between base and emitter terminals. Unlike the FET, the BJT is a low input-impedance device. The BJT has a higher transconductance than the FET. Bipolar transistors can be made to conduct with light (photons) as well as current. Devices designed for this purpose are called phototransistors.

Field-effect transistor[]

The field-effect transistor (FET), sometimes called a unipolar transistor, uses either electrons (N-channel FET) or holes (P-channel FET) for conduction. The three main terminals of the FET are named source, gate and drain. On some FETs a fourth connection to the body (substrate) is provided, but normally the body is connected internally to the source.

A voltage applied between the gate and source controls the current flowing between the source and drain. In FETs the source/ drain current flows through a conducting channel near the gate. This channel connects the source region to the drain region. The channel conductivity is varied by the electric field generated by the voltage applied between the gate/source terminals. In this way the current flowing between the source and drain is controlled. Like bipolar transistors, FETs can be made to conduct with light (photons) as well as voltage. Devices designed for this purpose are called phototransistors.

FETs are divided into two families: junction FET (JFET) and insulated gate FET (IGFET). The IGFET is more commonly known as metal-oxide-semiconductor FET (MOSFET), from their original construction as a layer of metal (the gate), a layer of oxide (the insulation), and a layer of semiconductor. Unlike IGFETs, the JFET gate forms a PN diode with the channel which lies between the source and drain. Functionally, this makes the N-channel JFET the solid state equivalent of the vacuum tube triode which, similarly, forms a diode between its grid and cathode. Also, both devices operate in the depletion mode, they both have a high input impedance, and they both conduct current under the control of an input voltage.

MESFETs are JFETs, in which the reverse biased PN junction is replaced by a semiconductor-metal Schottky-junction. These, and the HEMFETs (high electron mobility FETs), in which a two-dimensional electron gas with very high carrier mobility is used for charge transport, are especially suitable for use at very high frequencies (microwave frequencies; several GHz).

FETs are further divided into depletion-mode and enhancement-mode types. Mode refers to the polarity of the gate voltage with respect to the source at the threshold of conduction. For N-channel depletion-mode FETs the gate is negative with respect to the source while for N-channel enhancement-mode FETs the gate is positive, at the threshold of conduction. For both modes, if the gate voltage is made more positive the source/drain current will increase. For P-channel devices the polarities are reversed. Nearly all JFETs are depletion-mode types and most IGFETs are enhancement-mode types.

Metal-oxide-semiconductor FET (MOSFET)[]

The metal–oxide–semiconductor field-effect transistor (MOSFET, MOS-FET, or MOS FET), also known as the metal–oxide–silicon transistor (MOS transistor, or MOS),[49] is a type of field-effect transistor that is fabricated by the controlled oxidation of a semiconductor, typically silicon. It has an insulated gate, whose voltage determines the conductivity of the device. This ability to change conductivity with the amount of applied voltage can be used for amplifying or switching electronic signals. The MOSFET is by far the most common transistor, and the basic building block of most modern electronics.[50] The MOSFET accounts for 99.9% of all transistors in the world.[51]

Usage of MOSFETs and BJTs[]

The MOSFET is by far the most widely used transistor for both digital circuits as well as analog circuits,[52] accounting for 99.9% of all transistors in the world.[53] The bipolar junction transistor (BJT) was previously the most commonly used transistor during the 1950s to 1960s. Even after MOSFETs became widely available in the 1970s, the BJT remained the transistor of choice for many analog circuits such as amplifiers because of their greater linearity, up until MOSFET devices (such as power MOSFETs, LDMOS and RF CMOS) replaced them for most power electronic applications in the 1980s. In integrated circuits, the desirable properties of MOSFETs allowed them to capture nearly all market share for digital circuits in the 1970s. Discrete MOSFETs (typically power MOSFETs) can be applied in transistor applications, including analog circuits, voltage regulators, amplifiers, power transmitters and motor drivers.

Other transistor types[]

  • field-effect transistor (FET):
    • metal–oxide–semiconductor field-effect transistor (MOSFET), where the gate is insulated by a shallow layer of insulator
    • carbon nanotube field-effect transistor (CNFET), where the channel material is replaced by a carbon nanotube
    • junction gate field-effect transistor (JFET), where the gate is insulated by a reverse-biased p–n junction
    • metal–semiconductor field-effect transistor (MESFET), similar to JFET with a Schottky junction instead of a p–n junction
      • high-electron-mobility transistor (HEMT)
    • inverted-T field-effect transistor (ITFET)
    • fast-reverse epitaxial diode field-effect transistor (FREDFET)
    • organic field-effect transistor (OFET), in which the semiconductor is an organic compound
    • ballistic transistor (disambiguation)
    • FETs used to sense environment
      • ion-sensitive field-effect transistor (IFSET), to measure ion concentrations in solution
      • electrolyte–oxide–semiconductor field-effect transistor (EOSFET), neurochip
      • deoxyribonucleic acid field-effect transistor (DNAFET)
  • bipolar junction transistor (BJT):
    • heterojunction bipolar transistor, up to several hundred GHz, common in modern ultrafast and RF circuits
    • Schottky transistor
    • avalanche transistor
    • Darlington transistors are two BJTs connected together to provide a high current gain equal to the product of the current gains of the two transistors
    • insulated-gate bipolar transistors (IGBTs) use a medium-power IGFET, similarly connected to a power BJT, to give a high input impedance. Power diodes are often connected between certain terminals depending on specific use. IGBTs are particularly suitable for heavy-duty industrial applications. The ASEA Brown Boveri (ABB) 5SNA2400E170100 ,[54] intended for three-phase power supplies, houses three n–p–n IGBTs in a case measuring 38 by 140 by 190 mm and weighing 1.5 kg. Each IGBT is rated at 1,700 volts and can handle 2,400 amperes.
    • phototransistor
    • emitter-switched bipolar transistor (ESBT) is a monolithic configuration of a high-voltage bipolar transistor and a low-voltage power MOSFET in cascode topology. It was introduced by STMicroelectronics in the 2000s,[55] and abandoned a few years later around 2012.[56]
    • multiple-emitter transistor, used in transistor–transistor logic and integrated current mirrors
    • multiple-base transistor, used to amplify very-low-level signals in noisy environments such as the pickup of a record player or radio front ends. Effectively, it is a very large number of transistors in parallel where, at the output, the signal is added constructively, but random noise is added only stochastically.[57] multigate devices:
      • tetrode transistor;
      • pentode transistor;
      • trigate transistor (prototype by Intel);
      • dual-gate field-effect transistors have a single channel with two gates in cascode; a configuration optimized for high-frequency amplifiers, mixers, and oscillators.
  • Unijunction transistors can be used as simple pulse generators. They comprise a main body of either P-type or N-type semiconductor with ohmic contacts at each end (terminals Base1 and Base2). A junction with the opposite semiconductor type is formed at a point along the length of the body for the third terminal (Emitter).
  • Dual gate FETs have a single channel with two gates in cascode; a configuration that is optimized for high frequency amplifiers, mixers, and oscillators.
  • Transistor arrays are used for general purpose applications, function generation and low-level, low-noise amplifiers. They include two or more transistors on a common substrate to ensure close parameter matching and thermal tracking, characteristics that are especially important for long tailed pair amplifiers.
  • Darlington transistors comprise a medium power BJT connected to a power BJT. This provides a high current gain equal to the product of the current gains of the two transistors. Power diodes are often connected between certain terminals depending on specific use.
  • Insulated gate bipolar transistors (IGBTs) use a medium power IGFET, similarly connected to a power BJT, to give a high input impedance. Power diodes are often connected between certain terminals depending on specific use. IGBTs are particularly suitable for heavy-duty industrial applications. The Asea Brown Boveri (ABB) 5SNA2400E170100 [2] illustrates just how far power semiconductor technology has advanced. Intended for three-phase power supplies, this device houses three NPN IGBTs in a case measuring 38 by 140 by 190 mm and weighing 1.5 kg. Each IGBT is rated at 1,700 volts and can handle 2,400 amperes.
  • Single-electron transistors (SET) consist of a gate island between two tunnelling junctions. The tunnelling current is controlled by a voltage applied to the gate through a capacitor. [3][4]
  • Complete list of transistor types T-Transistor.com

Semiconductor material[]

The first BJTs were made from germanium (Ge) and some high power types still are. Silicon (Si) types currently predominate but certain advanced microwave and high performance versions now employ the compound semiconductor material gallium arsenide (GaAs) and the semiconductor alloy silicon germanium (SiGe). Single element semiconductor material (Ge and Si) is described as elemental.

Characteristics of the most common semiconductor materials used to make transistors are given in the table below:

Semiconductor material characteristics
Semiconductor
material
Junction forward
voltage
V @ 25 °C
Electron mobility
m/s @ 25 °C
Hole mobility
m/s @ 25 °C
Max. junction temp.
°C
Ge 0.27 0.39 0.19 70 to 100
Si 0.71 0.14 0.05 150 to 200
GaAs 1.03 0.85 0.05 150 to 200
Al-Si junction 0.3 150 to 200

The junction forward voltage is the voltage applied to the emitter-base junction of a BJT in order to make the base conduct a specified current. The current increases exponentially as the junction forward voltage is increased. The values given in the table are typical for a current of 1 mA (the same values apply to semiconductor diodes). The lower the junction forward voltage the better, as this means that less power is required to "drive" the transistor. The junction forward voltage for a given current decreases with temperature. For a typical silicon junction the change is approximately −2.1 mV/°C.

The electron mobility and hole mobility columns show the average speed that electrons and holes diffuse through the semiconductor material with an electric field of 1 volt per meter applied across the material. In general, the higher the electron mobility the faster the transistor. The table indicates that Ge is a better material than Si in this respect. However, Ge has four major shortcomings compared to silicon and gallium arsenide: its maximum temperature is limited, it has relatively high leakage current, it cannot withstand high voltages and it is less suitable for fabricating integrated circuits. Because the electron mobility is higher than the hole mobility for all semiconductor materials, a given bipolar NPN transistor tends to be faster than an equivalent PNP transistor type. GaAs has the fastest electron mobility of the three semiconductors. It is for this reason that GaAs is used in high frequency applications. A relatively recent FET development, the high electron mobility transistor (HEMT), has a heterostructure (junction between different semiconductor materials) of aluminium gallium arsenide (AlGaAs)-gallium arsenide (GaAs) which has double the electron mobility of a GaAs-metal barrier junction. Because of their high speed and low noise, HEMTs are used in satellite receivers working at frequencies around 12 GHz.

Max. junction temperature values represent a cross section taken from various manufacturers' data sheets. This temperature should not be exceeded or the transistor may be damaged.

Al-Si junction refers to the high-speed (aluminum-silicon) semiconductor-metal barrier diode, commonly known as a Schottky diode. This is included in the table because some silicon power IGFETs have a parasitic reverse Schottky diode formed between the source and drain as part of the fabrication process.

Packaging[]

File:Transistor-photo.JPG

Through-hole transistors (tape measure marked in centimetres)

Transistors come in many different packages (chip carriers) (see images). The two main categories are through-hole (or leaded), and surface-mount, also known as surface mount device (SMD). The ball grid array (BGA) is the latest surface mount package (currently only for large transistor arrays). It has solder "balls" on the underside in place of leads. Because they are smaller and have shorter interconnections, SMDs have better high frequency characteristics but lower power rating.

Transistor packages are made of glass, metal, ceramic or plastic. The package often dictates the power rating and frequency characteristics. Power transistors have large packages that can be clamped to heat sinks for enhanced cooling. Additionally, most power transistors have the collector or drain physically connected to the metal can/metal plate. At the other extreme, some surface-mount microwave transistors are as small as grains of sand.

Often a given transistor type is available in different packages. Transistor packages are mainly standardized, but the assignment of a transistor's functions to the terminals is not: different transistor types can assign different functions to the package's terminals. Even for the same transistor type the terminal assignment can vary (normally indicated by a suffix letter to the part number- i.e. BC212L and BC212K).

Usage[]

In the early days of transistor circuit design, the bipolar junction transistor, or BJT, was the most commonly used transistor. Even after MOSFETs became available, the BJT remained the transistor of choice for digital and analog circuits because of their ease of manufacture and speed. However, the MOSFET has several desirable properties for digital circuits, and since major advancements in digital circuits have pushed MOSFET design to state-of-the-art. MOSFETs are now commonly used for both analog and digital functions.

File:BJT Switch.png

BJT Transistor used as an electronic switch

File:BJT Amplifier.png

Amplifier-Circuit Diagram

Switches[]

Transistors are commonly used as electronic switches, for both high power applications including switched-mode power supplies and low power applications such as logic gates.

Amplifiers[]

From mobile phones to televisions, vast numbers of products include amplifiers for sound reproduction, radio transmission, and signal processing. The first discrete transistor audio amplifiers barely supplied a few hundred milliwatts, but power and audio fidelity gradually increased as better transistors became available and amplifier architecture evolved.

Transistors are commonly used in modern musical instrument amplifiers, where circuits up to a few hundred watts are common and relatively cheap. Transistors have largely replaced valves in instrument amplifiers. Some musical instrument amplifier manufacturers mix transistors and vacuum tubes in the same circuit, to utilize the inherent benefits of both devices.

Computers[]

The "first generation" of electronic computers used vacuum tubes, which generated large amounts of heat and were bulky, and unreliable. The development of the transistor was key to computer miniaturization and reliability. The "second generation" of computers, through the late 1950s and 1960s featured boards filled with individual transistors and magnetic memory cores. Subsequently, transistors, other components, and their necessary wiring were integrated into a single, mass-manufactured component: the integrated circuit. Transistors incorporated into integrated circuits have replaced most discrete transistors in modern digital computers.

Advantages of transistors over vacuum tubes[]

Before the development of transistors, vacuum tubes (or in the UK thermionic valves or just valves) were the main active components in electronic equipment. The key advantages that have allowed transistors to replace their vacuum tube predecessors in most applications are:

  • Smaller size (despite continuing miniaturization of vacuum tubes)
  • Highly automated manufacture
  • Lower cost (in volume production)
  • Lower possible operating voltages (but vacuum tubes can operate at higher voltages)
  • No warm-up period (most vacuum tubes need 10 to 60 seconds to function correctly)
  • Lower power dissipation (no heater power, very low saturation voltage)
  • Higher reliability and greater physical ruggedness (although vacuum tubes are electrically more rugged. Also the vacuum tube is much more resistant to nuclear electromagnetic pulses (NEMP) and electrostatic discharge (ESD))
  • Much longer life (vacuum tube cathodes are eventually exhausted and the vacuum can become contaminated)
  • Complementary devices available (allowing circuits with complementary-symmetry: vacuum tubes with a polarity equivalent to PNP BJTs or P type FETs are not available)
  • Ability to control large currents (power transistors are available to control hundreds of amperes, vacuum tubes to control even one ampere are large and costly)
  • Much less microphonic (vibration can modulate vacuum tube characteristics, though this may contribute to the sound of guitar amplifiers)

" Nature abhors a vacuum tube " Myron Glass (see John R. Pierce), Bell Telephone Laboratories, circa 1948.

Gallery[]

A wide range of transistors has been available since the 1960s and manufacturers continually introduce improved types. A few examples from the main families are noted below. Unless otherwise stated, all types are made from silicon semiconductor. Complementary pairs are shown as NPN/PNP or N/P channel. Links go to manufacturer datasheets, which are in PDF format. (On some datasheets the accuracy of the stated transistor category is a matter of debate.)

  • 2N3904/2N3906, BC182/BC212 and BC546/BC556: Ubiquitous, BJT, general-purpose, low-power, complementary pairs. They have plastic cases and cost roughly ten cents U.S. in small quantities, making them popular with hobbyists.
  • AF107: Germanium, 0.5 watt, 250 Mhz PNP BJT.
  • BFP183: Low power, 8 GHz microwave NPN BJT.
  • LM394: "supermatch pair", with two NPN BJTs on a single substrate.
  • 2N2219A/2N2905A: BJT, general purpose, medium power, complementary pair. With metal cases they are rated at about one watt.
  • 2N3055/MJ2955: For years, the venerable NPN 2N3055 has been the "standard" power transistor. Its complement, the PNP MJ2955 arrived later. These 1 MHz, 15 A, 60 V, 115 W BJTs are used in audio power amplifiers, power supplies, and control.
  • 2SC3281/2SA1302: Made by Toshiba, these BJTs have low-distortion characteristics and are used in high-power audio amplifiers. They have been widely counterfeited [5].
  • BU508: NPN, 1500 V power BJT. Designed for television horizontal deflection, its high voltage capability also makes it suitable for use in ignition systems.
  • MJ11012/MJ11015: 30 A, 120 V, 200 W, high power Darlington complementary pair BJTs. Used in audio amplifiers, control, and power switching.
  • 2N5457/2N5460: JFET (depletion mode), general purpose, low power, complementary pair.
  • BSP296/BSP171: IGFET (enhancement mode), medium power, near complementary pair. Used for logic level conversion and driving power transistors in amplifiers.
  • IRF3710/IRF5210: IGFET (enhancement mode), 40 A, 100 V, 200 W, near complementary pair. For high-power amplifiers and power switches, especially in automobiles.

Transistor manufacturers[]

See also[]

References[]

Patents[]

Books[]

  • Amos S W & James M R (1999). Principles of Transistor Circuits. Butterworth-Heinemann. ISBN 0-7506-4427-3.
  • Horowitz, Paul & Hill, Winfield (1989). The Art of Electronics. Cambridge University Press. ISBN 0-521-37095-7.{{cite book}}: CS1 maint: multiple names: authors list (link)
  • Riordan, Michael & Hoddeson, Lillian (1998). Crystal Fire. W.W Norton & Company Limited. ISBN 0-393-31851-6.{{cite book}}: CS1 maint: multiple names: authors list (link) The invention of the transistor & the birth of the information age
  • Warnes, Lionel (1998). Analogue and Digital Electronics. Macmillan Press Ltd. ISBN 0-333-65820-5.

Other[]

External links[]

This page uses Creative Commons Licensed content from Wikipedia (view authors). Smallwikipedialogo.png
  1. "1926 – Field Effect Semiconductor Device Concepts Patented". Computer History Museum. Archived from the original on March 22, 2016. Retrieved March 25, 2016.
  2. "The Nobel Prize in Physics 1956". Nobelprize.org. Nobel Media AB. Archived from the original on December 16, 2014. Retrieved December 7, 2014.
  3. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  4. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  5. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
  6. Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. p. 168. ISBN 9780470508923.
  7. "Milestones:Invention of the First Transistor at Bell Telephone Laboratories, Inc., 1947". IEEE Global History Network. IEEE. Archived from the original on November 21, 2014. Retrieved December 7, 2014.
  8. "Milestones:List of IEEE Milestones". Institute of Electrical and Electronics Engineers. Retrieved 25 July 2019.
  9. "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Retrieved 21 July 2019.
  10. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  11. Moavenzadeh, Fred (1990). Concise Encyclopedia of Building and Construction Materials. ISBN 9780262132480.
  12. Lilienfeld, Julius Edgar (1927). Specification of electric current control mechanism patent application.
  13. Vardalas, John (May 2003) Twists and Turns in the Development of the Transistor Archived January 8, 2015, at the Wayback Machine IEEE-USA Today's Engineer.
  14. Lilienfeld, Julius Edgar, "Method and apparatus for controlling electric current" U.S. patent 1745175 January 28, 1930 (filed in Canada 1925-10-22, in US October 8, 1926).
  15. "Method And Apparatus For Controlling Electric Currents". United States Patent and Trademark Office.
  16. "Amplifier For Electric Currents". United States Patent and Trademark Office.
  17. "Device For Controlling Electric Current". United States Patent and Trademark Office.
  18. "Twists and Turns in the Development of the Transistor". Institute of Electrical and Electronics Engineers, Inc. Archived from the original on January 8, 2015.
  19. Heil, Oskar, "Improvements in or relating to electrical amplifiers and other control arrangements and devices", Patent No. GB439457, European Patent Office, filed in Great Britain 1934-03-02, published December 6, 1935 (originally filed in Germany March 2, 1934).
  20. 20.0 20.1 Moskowitz, Sanford L. (2016). Advanced Materials Innovation: Managing Global Technology in the 21st century. John Wiley & Sons. p. 168. ISBN 9780470508923.
  21. 21.0 21.1 21.2 "Martin Atalla in Inventors Hall of Fame, 2009". Retrieved 21 June 2013.
  22. "Dawon Kahng". National Inventors Hall of Fame. Retrieved 27 June 2019.
  23. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. p. 120. ISBN 9783540342588.
  24. "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  25. Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  26. Motoyoshi, M. (2009). "Through-Silicon Via (TSV)" (PDF). Proceedings of the IEEE. 97 (1): 43–48. doi:10.1109/JPROC.2008.2007462. ISSN 0018-9219.
  27. "Transistors Keep Moore's Law Alive". EETimes. 12 December 2018. Retrieved 18 July 2019.
  28. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
  29. Hittinger, William C. (1973). "Metal-Oxide-Semiconductor Technology". Scientific American. 229 (2): 48–59. Bibcode:1973SciAm.229b..48H. doi:10.1038/scientificamerican0873-48. ISSN 0036-8733. JSTOR 24923169.
  30. "1963: Complementary MOS Circuit Configuration is Invented". Computer History Museum. Retrieved 6 July 2019.
  31. D. Kahng and S. M. Sze, "A floating gate and its application to memory devices", The Bell System Technical Journal, vol. 46, no. 4, 1967, pp. 1288–1295
  32. Colinge, J.P. (2008). FinFETs and Other Multi-Gate Transistors. Springer Science & Business Media. p. 11. ISBN 9780387717517.
  33. Sekigawa, Toshihiro; Hayashi, Yutaka (1 August 1984). "Calculated threshold-voltage characteristics of an XMOS transistor having an additional bottom gate". Solid-State Electronics. 27 (8): 827–828. Bibcode:1984SSEle..27..827S. doi:10.1016/0038-1101(84)90036-4. ISSN 0038-1101.
  34. "IEEE Andrew S. Grove Award Recipients". IEEE Andrew S. Grove Award. Institute of Electrical and Electronics Engineers. Retrieved 4 July 2019.
  35. "The Breakthrough Advantage for FPGAs with Tri-Gate Technology" (PDF). Intel. 2014. Retrieved 4 July 2019.
  36. "Dawon Kahng". National Inventors Hall of Fame. Retrieved 27 June 2019.
  37. 37.0 37.1 "Remarks by Director Iancu at the 2019 International Intellectual Property Conference". United States Patent and Trademark Office. June 10, 2019. Retrieved 20 July 2019.
  38. Ashley, Kenneth L. (2002). Analog Electronics with LabVIEW. Prentice Hall Professional. p. 10. ISBN 9780130470652.
  39. Thompson, S. E.; Chau, R. S.; Ghani, T.; Mistry, K.; Tyagi, S.; Bohr, M. T. (2005). "In search of "Forever," continued transistor scaling one new material at a time". IEEE Transactions on Semiconductor Manufacturing. 18 (1): 26–36. doi:10.1109/TSM.2004.841816. ISSN 0894-6507. In the field of electronics, the planar Si metal–oxide–semiconductor field-effect transistor (MOSFET) is perhaps the most important invention.
  40. Kubozono, Yoshihiro; He, Xuexia; Hamao, Shino; Uesugi, Eri; Shimo, Yuma; Mikami, Takahiro; Goto, Hidenori; Kambe, Takashi (2015). "Application of Organic Semiconductors toward Transistors". Nanodevices for Photonics and Electronics: Advances and Applications. CRC Press. p. 355. ISBN 9789814613750.
  41. "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Retrieved 21 July 2019.
  42. "Milestones:Invention of the First Transistor at Bell Telephone Laboratories, Inc., 1947". IEEE Global History Network. IEEE. Archived from the original on October 8, 2011. Retrieved August 3, 2011.
  43. List of IEEE Milestones
  44. FETs/MOSFETs: Smaller apps push up surface-mount supply. globalsources.com (April 18, 2007)
  45. "ATI and Nvidia face off Archived May 23, 2013, at the Wayback Machine." CNET (October 7, 2009). Retrieved on February 2, 2011.
  46. Turley, Jim (December 18, 2002). "The Two Percent Solution" Archived March 4, 2016, at the Wayback Machine. embedded.com
  47. 47.0 47.1 "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  48. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
  49. "Who Invented the Transistor?". Computer History Museum. 4 December 2013. Retrieved 20 July 2019.
  50. "Triumph of the MOS Transistor". YouTube. Computer History Museum. 6 August 2010. Retrieved 21 July 2019.
  51. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  52. "MOSFET DIFFERENTIAL AMPLIFIER" (PDF). Boston University. Retrieved 10 August 2019.
  53. "13 Sextillion & Counting: The Long & Winding Road to the Most Frequently Manufactured Human Artifact in History". Computer History Museum. April 2, 2018. Retrieved 28 July 2019.
  54. "IGBT Module 5SNA 2400E170100" (PDF). Archived (PDF) from the original on April 26, 2012. Retrieved June 30, 2012.
  55. Buonomo, S.; Ronsisvalle, C.; Scollo, R.; STMicroelectronics; Musumeci, S.; Pagano, R.; Raciti, A.; University of Catania Italy (October 16, 2003). IEEE (ed.). A new monolithic emitter-switching bipolar transistor (ESBT) in high-voltage converter applications. 38th IAS annual Meeting on Conference Record of the Industry Applications Conference. Vol. Vol. 3 of 3. Salt Lake City. pp. 1810–1817. Retrieved February 17, 2019. {{cite conference}}: |volume= has extra text (help)
  56. STMicroelectronics. "ESBTs". www.st.com. Retrieved February 17, 2019. ST no longer offers these components, this web page is empty, and datasheets are obsoletes{{cite web}}: CS1 maint: url-status (link)
  57. Zhong Yuan Chang, Willy M. C. Sansen, Low-Noise Wide-Band Amplifiers in Bipolar and CMOS Technologies, page 31, Springer, 1991 ISBN 0792390962.
Advertisement